
68 6 • 2007 www.dotnetpro.de

backend, i.e. Team Developer and
SQLBase, and NXj and DataServer.
Unify's NXj product has a series of
features that are not provided in Team
Developer. As a result, Unify is promo-
ting this product as the one with the
more promising future. Team Developer
2006 has now been released, but under
the name of 5.0. Discussions in the rele-
vant newsgroups have generally been
critical about its quality.

Regardless of the above, many compa-
nies have been looking – some for many
years – for more future-proof technologies
with which to maintain and develop their
applications, especially since it is beco-
ming increasingly difficult to find good
4GL developers. The Unify deal is just one
more reason to assess the situation more
quickly and to find a short-term route out
of this technological dead-end.

An assortment of business-critical
applications with a history of change and
expansion cannot be migrated overnight
but instead poses a huge challenge to
company management and its IT depart-
ment. The biggest challenge of all is to
minimize any possible risk. There is
something to the saying “if it works, don’t

fix it”. Nevertheless, touching the code
cannot always be avoided if the system is
to run in the future. Not only must a
suitable target platform be chosen but
there is also the thought-provoking ques-
tion about how to tackle migration.

Reconstruction or renovation?

Should all of the applications be develo-
ped from scratch on the target platform
or is an automatic conversion of existing
code preferable? There is no clear answer
to this difficult question, which requires
prior analysis.

Small organizations with 10 to 15
applications and 10 to 30 thousand lines
of code often decide for the first option.
Freed from all inherited burdens and able
to make use of current technology, a sys-
tem can be created that can be under-
stood and maintained by the existing de-
velopment team. On the other hand, all
mistakes can be repeated in in the pro-
cess, which give rise to a corresponding
increase in cost for the test and acceptan-
ce phases. Moreover, in a “live system”
the new and the old product must run in
parallel during migration to limit any

Automatic migration of Gupta applications to .NET

Transforming a Gupta application created by Team Developer into a .NET application at the

press of a button has been the dream of many a user, especially since the takeover of

Gupta by Unify. An international association of software houses calling itself "The Porting

Project" provides a service that comes very close to fulfilling this ideal.

Back to the Future

I t is always difficult to part company
with a good friend. The world of soft-
ware is no different. Thousands of

database applications involving billions
of lines of code are still based on 4GL
technology from Gupta, even when the
underlying database is no longer SQLBase
but perhaps Microsoft SQL server or
Oracle. Since the mid-nineties, SAL (Scal-
able Application Language, previously
SQLWindows Application Language) and
Team Developer have been used as a
toolkit for efficiently coding database
access and for creating reasonable gra-
phical interfaces. Up until recently, this
was the reason why companies and their
IT departments relied on Gupta's deve-
lopment environment.

However, change is in the air, brought
about in part by the announcement in
the middle of last year of Gupta's take -
over by Unify. The portfolio of both com-
panies previously included a develop-
ment environment as well as a database

Praxis

The Porting Project (PPJ)

The Porting Project is a custom development that adopts a predominately automated
approach for the reliable migration of Team Developer applications (Gupta, SQLWin-
dows) to C# or VB.NET 2.0 and Visual Studio .NET.

It is a blend of software technologies, expertise, support and a worldwide active
network of associated professional organizations. The number of companies involved
has deliberately been kept low. Fecher, a company based in Hesse, is responsible for
German speaking countries and Eastern Europe. It has subsidiaries in Berlin, Munich,
Paderborn, Vienna and Zurich as well as an offshore development centre in Oradea /
Romania. Fecher became known through its Team Developer add-ons such as building-
BLOCKS and is now the first German delivery partner for Microsoft's NXT campaign.

Contact: www.fecher.eu

Summary

Author

Dr. Bernhard Röhrig

is a freelance consul-
tant for databases, net-
works and operating
systems, as well as the author of nu-
merous specialist books. He can be
contacted via www.roehrig.com.

Languages SAL, C#

Prerequisites Team Developer, VS.NET

Technology Migration of Gupta 4GL ap-
plications to .NET

dotnetpro.code

A0706Gupta.NET

www.dotnetpro.de 6 • 2007 69

possible damage caused by faults in the
new system. This can give rise to additio-
nal risk factors and sources of error.

This option is out of the question for
most large projects. The companies affe-
cted usually look for an automated solu-
tion with the following criteria in mind:

• Costs: a completely new develop-
ment is an order of magnitude more
costly than an automated migration

• Time factor: developing and imple-
menting new software takes consi-
derably longer than using a porting
tool that works reliably

• Risks: in addition to these two fac -
tors, there is the risk of design and
coding mistakes that always accom-
pany any new development

Suppliers of automatic code porting
tools promise to minimize the above fac -
tors with their products and therefore
make the migration process more mana-
geable and less daunting.

Anyone for iced tea?

An international association of experien-
ced software houses called the Ice Tea
Group (ITG), has been involved in por-
ting SAL applications to .NET for some
years. ITG has developed tools such as In-
telliSal, XSal2 and IntelliDoc. Fecher is its
business partner for Germany, Austria,
Switzerland and Eastern Europe.

The main component provided by the
Porting Project is the Ice Porter tool,
which performs a fully automatic conver-
sion of existing SQLWindows code into
C# or VB.NET 2.0 based on the PPJ/FW
porting framework (see figure 1). The
conversion produces a result that accura-
tely reflects the source code. This is very
important if the client's existing develop-
ment team is to continue to maintain the

ported program code. In addition to the
source code, reports produced with the
Gupta Report Builder can be ported to
either Crystal Reports or List&Label. Fe-
cher and the other Porting Project part-
ners use the Ice Porter in their porting
projects. The manual processing that is
required means that it does not make
sense for the customer to purchase the
tool and use it on-site.

One step at a time

An automatic porting project is carried
out in phases, in much the same way as

normal software has phases of develop-
ment:

1. Project setup
2. Code generation
3. Code completion
4. Code finalization
5. Test
6. Commissioning
7. Maintenance

During the setup phase, an inventory
is made of existing SAL applications, their
resources, bitmaps, cursor and configu-
ration files, the SAL libraries, external
DLLs and reports. A free preliminary ana-
lysis providing a project outline, a risk as-
sessment and an initial estimate of the
expected costs can be used to decide
what further action should be taken. The
subsequent detailed analysis provides in-
formation about source code improve-
ment and enables a detailed project plan
and final cost to be produced. The end re-
sult is a fixed-price porting quotation, for
which the customer only has to give the
go-ahead.

The following project phases assume
that the SAL code has been processed in
the project setup phase and partitioned
into libraries. A purpose-built inventory
tool (see figure 2) is used to help with this

Figure 1 The

PPJ/FW porting

framework

supports automatic

migration of Gupta

applications to .NET.

Figure 2 PPJ-Inventory prepares the SAL code for conversion to C#.

70 6 • 2007 www.dotnetpro.de

work. At the end of this phase the options
for the actual porting tool, the Ice Porter,
will have been defined. Furthermore,
specially adapted Ice Porter filters are de-
veloped in order to incorporate individu-
al customizations into the porting.

The iceman cometh

As soon as all conditions have been satis-
fied in the initial project phase, code ge-
neration can begin. The Ice Porter now
starts the task of compiling the available
SAL applications into (as perfect as pos-
sible) C# code, whilst taking into account
the resources required – normally bet-
ween several hundred thousand and mil-
lions of lines of code. At the same time, it
also generates the required VS.NET pro-
ject files (see figure 3). Experience has
shown that manual rework is needed in
both of the subsequent processing pha-
ses to ensure that code compiles and exe-

cutes perfectly. However, thanks to the ef-
ficient performance of the Ice Porter and
by thorough preparation in the setup
phase, this effort can be minimized.

The goal of code completion is a com-
pilable .NET project, no more and no less.
This calls for expertise in the source and
target languages, the conversion algo-
rithms used by the Ice Porter and the li-
braries of the support framework. This is
an area where fecher can demonstrate its
unique strengths. An iterative process is
used so that the Ice Porter, for example,
by using filters, achieves an optimum
translation outcome. If necessary, the SAL
code is modified (without affecting its
functionality), it is then translated by the
Ice Porter, and the output from the Ice
Porter is compiled under .NET. This pro-
cedure is repeated until the .NET compi-
lation is error-free.

In the subsequent phase of code fina-
lization, the compilable project must be

transformed into an application that can
be executed and that demonstrates beha-
vior identical to the original application.
The combination of specialized porting
know-how and experience in both lan-
guage environments (which is also requi-
red in the initial phase), is needed here
too. Analysis of Ice Porter warnings at the
start of the finalization phase may indi-
cate that some SAL constructs cannot be
adequately transformed. Components
such as these, which cannot or should
not be compiled automatically, will be
created manually. At this time the first
functional software tests and resulting
actions needed to resolve any problems
are carried out.

The proof of the pudding ...

Once the ported software is basically
working , the subsequent test phase is
one of exhaustive functional software-

Praxis
Automatic migration of Gupta applications to .NET

Figure 3 Ice Porter the

tool of choice for automa-

ted code generation.

www.dotnetpro.de 6 • 2007 71

testing and checking whether the actual
results match the expected results.

Fecher uses a computer-based soft -
ware-testing tool to automate the test
phase. The company will supply this tool,
the Triton Tosca Commander, to custo-
mers upon request (see figure 4). This
software stores technical information in
a neutral form in XML-GUI Maps. Adap-
tors for SQLWindows and .NET enable
the test cases to be used later in .NET
after porting is finished.

The following, seventh phase is con-
cerned with maintenance of the comple-
ted .NET project. Respecting the code
structure during conversion ensures that
the user's development team will be able
to maintain the code and carry out con-
tinued development. Of course, this will
necessitate additional training in this
area and a certain period of familiariza-
tion with .NET technology and tools.
Support is provided via fecher's ongoing
training program (see figure 5).

The creators of the Porting Project
have paid considerable attention to
achieving the highest degree of automa-
tion for the core process of code transfor-
mation. This means staying as true to the
source code as possible and not introdu-
cing any new constructs during the por-
ting process. This, of course, assumes that
the .NET platform totally supports all of
the SAL 4GL features. Unfortunately, this
support is never 100%. This gives rise to
problems during the conversion and a
number of challenges that the porting
 team must overcome.

A goal of the Ice Tea Group is to minimi-
ze any risks that may arise. The migration
software supports:

• nearly all SAL functions including
SalCompileAndEvaluate(), a function
for executing dynamically created
source code

• bind-into variable (100%),
• TableWindows (100%),
• the VT library (100%),
• QO with the exception of Quick-

Graph
• XSal
• and much more

Together with the ported application
the Porting Project Framework is provi-
ded – a comprehensive library of .NET
functions. It enhances .NET with 4GL fea-
tures, Grid functions and numerous SAL
commands, which cannot be directly
mapped into C# or VB.NET. The porting
process replaces components such as
QuickGraph with alternative libraries un-
der .NET. Report generation with Report
Builder, including all features such as for-
mulas and BLOB processing, are modeled
using Crystal Reports – without needing
to access external libraries, DLLs or COM

Figure 4 Triton Tosca Commander

supports automated application

testing.

Figure 5 Training measures to

support a porting project.

Treatment of Windows byRef parameters

The SAL code

Set hWndCancel = SalCreateWindow(dlgCancel, hWndForm, bCancel)
is compiled automatically to:

// TODO: Assign back the unsupported receive window parameter.
hWndCancel = Sal.CreateWindow(typeof(dlgCancel), Sys.hWndForm, bCancel);

and must be changed manually to:

hWndCancel = Sal.CreateWindow(typeof(dlgCancel), Sys.hWndForm, bCancel);
bCancel = App.dlgCancel.bCancel;

72 6 • 2007 www.dotnetpro.de

objects. The Ice Porter provides special
support for converting SAL functions into
an object-oriented syntax. The porting
tool provides the corresponding options
needed during porting.

Embedded SQL commands are con-
verted by the Porting Project framework
into native ADO.NET calls. The Frame-
work proves very useful here since it con-
tains a complete .NET implementation of
4GL features. This means that all of the
convenient features provided by embed-
ded SQL can still be used in future. The
connection to the physical database can
be configured externally. sqlTRANSLA-
TOR is a plugin developed by fecher for
the Porting Project framework allowing
alternative back ends such as Oracle and
Microsoft SQL Server to be used without
altering the source code.

Not yet perfect

There are still a few small but significant
things remaining that prevent conversion
from SAL to .NET at the press of a button.
It is precisely here that a programmer
must manually intervene, especially in

the finalization phase of the project. Even
here, the porting tool does not let the
 team down. Comments about these criti-
cal areas are displayed in the Ice Porter
log files and also in the generated source
code. They are highlighted in the Visual
Studio task panel, as shown in the small
example in figure 6.

This example illustrates the fact that
parameters may be passed by reference
in SAL, but not in C#. The box displays
the manual alteration needed to return
the parameter for a created window.

There are other language elements for
which conversion cannot be fully auto-
mated and which therefore require re-
work: unlike most other external libraries,
the Team Developer runtime DLLs are
not supported in .NET. This means that
their content must also be ported. The Ice
Porter generates empty external wrapper
functions for this purpose, which must be
filled out with code implemented during
the finalisation phase.

Although the porting tool virtually
replicates even the most complex of for-
mulas, discrepancies may arise in some
cases because of the different way that

SAL and .NET implement control elements.
It is therefore recommended that each
window and dialog be opened as a test to
detect and resolve any spurious discrepan-
cies. Refer to figure 7 for an example.

SAL allows multiple inheritance with
method overloading and late binding,
leading to very complex constructs that
can sometimes cause problems when
converting to C#. The porting tool there-
fore attaches to-do comments to the
appropriate pieces of code to prompt the
developer to check the porting result.

Conclusion

The Porting Project from the Ice Tea
Group provides an efficient collection of
software and know-how, which is able to
port even the most extensive Gupta pro-
ject to Visual Studio 2005 and all within a
calculable budget. The local porting part-
ners have a business model – offering a
conversion to .NET which runs and has
been tested – that dispels the user's con-
cerns about escalating cost factors and
residual risks, especially for the manual
rework. |||||||

Praxis
Automatic migration of Gupta applications to .NET

Figure 6 Manual work is also

supported.

Figure 7 Small corrections some-

times cannot be avoided.

