
Special Issue

dotnet-magazin.de © Software & Support Verlag GmbH

From SQLWindows to .NET
An automated process supports developers
to port 1.2 million lines of code

by Frank Wuttke

The software house nGroup ported a complex ERP application from SQLWindows to .NET.
The motivation for the porting was to use an up-to-date development environment, integrate
ready-made components in their own software, and to make customizations easier for the
customer.

What to do with a “Legacy” application
that has grown to over 1.2 million lines
of code in 17 years and shall be ported to
.NET now? For cost and time reasons,
manual porting and new development
were considered unrealistic options and
have been excluded. After long discus-
sions, the development team decided for
an automated porting approach followed
by manual post-processing. The IcePor-
ter tool was selected, which has been es-
pecially designed to convert Legacy SAL
applications to .NET [4].

Several differences between the source
and the target platform led to numerous
and comprehensive post-processing
tasks. Polymorphism, DB access, window
receive parameters, missing reporting
engines, and a special customization mo-
dule required most of the post-processing
work. Porting of existing and self deve-
loped COM objects to .NET was much
simpler.

After a total of nine months of por-
ting, the next steps for the company are
now the planning of the refactoring of
the source code and further develop-

ment of the solution in the new environ-
ment, adding features that could not be
addressed during the porting phase due
to time constraints.

Need for progress
The product eEvolution of the nGroup
software house in Hildesheim (Germany)
is an ERP application that has evolved from
the Microsoft Business Solution Apertum
and is deployed to more than 1,000 medi-
um-sized companies. To take advantage of
the new possibilities offered in recent years
by modern platforms and tools, nGroup
decided for the porting of their large and
comprehensive ERP solution, consisting
of several complex applications for a total
of more than 1.2 million lines of code. The
source platform is the 4GL language SQL-
Windows by Gupta. For nearly 20 years,
business applications in many different
areas have been developed using this lan-
guage. Compared to other tools it offered
great benefits at the time, such as embed-
ded SQL and a powerful IDE.

In the last few years SQLWindows
was surpassed by more powerful langu-

ages like Java and C#. Additionally, quali-
fied employees for SQLWindows are hard
to find and the future of the language is
uncertain. Therefore, the decision for
porting was not made only for technical
reasons.

The .NET Framework 2.0 and Visu-
al Studio 2005 were chosen as the target
platform. This decision was supported
by the underlying technical concepts, the
productivity in developing new compo-
nents and the possibilities of refactoring,
as well as the similarity with the look &
feel of previous Win32 applications. Af-
ter the goal was clear the porting team
started to explore how to accomplish the
mission.

Porting support for SQLWindows
A group of developers, operating under
the name Ice Tea Group, started working
on a porting solution for SQLWindows
years ago and developed a tool named
IcePorter as being part of a larger project
named The Porting Project (PPJ). The
tool fully and automatically translates
existing SQLWindows source code to C#

translated from the original German version

dotnet-magazin.de

Special Issue

© Software & Support Verlag GmbH

Listing 1

SQLWindows

Set sName = ́ ngroup eEvolution´

Call SalStrLeft(sName, 6, sname)

Call SalMessageBox(sName, ́ Hinweis´, 0)

C# .NET

sName= “ngroup eEvolution”;

Sal.StrLeft(sName, 6, sName);

Sal.MessageBox(sName, “Hinweis“, 0);

code based on a porting framework (PPJ/
FW). Generally spoken the PPJ/FW con-
tains the complete language implemen-
tation of SQLWindows. A comparison of
SQLWindows and C# code lines of a sim-
ple ported function (Listing 1) shows the
benefit of this framework.

The German partner of Ice Tea Group,
the company Fecher in Rodgau (Hessen),
was hired to execute the porting in close co-
operation with nGroup, the producer of the
ERP system. A first assessment phase initi-
ally promised that a “new” product would
magically be generated quickly. Like every
bigger project the porting was divided into
phases. The following description is specific
to this project, but may as well be adapted
to other porting projects of this size.

A transparent and structured ap-
proach is important for all phases. The
first analysis was performed using a tool.
The source code was analyzed using the
PPJ Inventory. The result contains statis-
tical data that is also used to calculate the
cost for the porting. The number of Sal-
CompileAndEvaluate functions, as well
as all external DLLs and ActiveX objects,
was also immediately known. For “clea-
ning” the code a log file was used that in-

dicates incompletely qualified references,
permutation of data types, and code con-
sidered incorrect for the stricter target lan-
guage. The cleaning also reduced the cost
because the price for porting, according
to the calculation used by Ice Tea Group,
depends on the number of lines of code.

A framework standardizes
proprietary functions
One of the project’s objectives was to
preserve the functions and the design in
a new “world”. The future application has
to be developed further and maintained
by the same employees. For these reasons
the porting process was organized using
a highly structured and automated ap-
proach and involved developers with dis-
tinctive knowledge of both worlds. Due
to the utilization of a framework, the struc-
ture of the source code was maintained in
the new target system so that the developers
of the old system are able to follow the new
source code without significant amount
of training. There were, however, some
complaints by “.NET purists” because
they had to familiarize themselves with
the old language up to a certain degree.
The most serious objection was that the
ported code was not object-oriented.
Thus IcePorter offers a large range of op-
tions, allowing for the translation of ma-
ny constructs into their equivalent object-
oriented syntax. Therefore, the code in the
previous example is also translated as:

sName = sName.Left(6);

An extensive ERP is mostly a dialogue ori-
ented program with countless SQL calls.

Database access in SQLWindows
is written using inline instructions. The
statement

Select name1, name2 into :sName1, :sName2 from

			 kunde where…

selects Name1 and Name2 into the vari-
ables sName1 and sName2. The porting
framework does not use a proprietary da-
tabase protocol to submit this statement
to the database. SQL code is ported using
the same syntax as in the source code. The
porting framework performs substan-
tial standardization work when execu-
ting these statements because it converts
every SQL command to standard ADO

.NET calls. The database connection can
be configured from the outside of the ap-
plication. For applications that have only
used the SQLBase database by Gupta so
far, a SQL translator module is also availa-
ble, allowing the ported application to use
Microsoft SQL Server or Oracle without
further interaction.

Even if C# is generally a more modern
language, the possibilities of embedded
SQL statements is what makes a 4GL lan-
guage stand out. Therefore there are nu-
merous functions calls in a SQLWindows
application that represent very complex
statements without having to program a
lot. If you look at the result of the function

Sal.TblPopulate(hWndGrid, hSqlHandle, ’SELECT *

		 FROM COMPANY’, TBL_FillAll);

It is obvious that the PPJ/FW is not only a
temporary library to provide the bridge to
.NET. It is a framework that makes 4GL
functions available in .NET and that cer-
tainly provides valuable services to further
developments. The statement above fills a
heavily extended VSGrid with all data of
the Company table. It wouldn’t make sense
to replace this function with a native .NET
implementation.

Specialties of the source system
have to be considered
SQLWindows is a loosely typed system.
It is object oriented but doesn’t support
overloading of methods or private and
public variables. On the other hand it sup-
ports multiple inheritance and late bound
method calls. The possibility to program
COM servers with this language is rarely
used. Instead, applications often utilize
COM and ActiveX objects, including
COM servers written using C++. Some of
these COM servers may link to the Gupta
runtime, something that is very important
to know especially in the context of a por-
ting project. SQLWindows is interpreted
and needs a runtime that consists of several
DLLs. Certainly a COM server used by the
new ported .NET application cannot ha-
ve any reference to any part of the Gupta
runtime. Special challenges with porting
are mostly caused by the “carelessness”
of the SQLWindows compiler. The poor
strictness of the data types leads to the fact
that a Boolean can be interchanged with a

Fig.1: Automated transfering from SQL Windows to
.NET with tooling

Special Issue

dotnet-magazin.de © Software & Support Verlag GmbH

Number, as well as WindowHandle with
File- and Sql-Handle types. Unqualified
references to windows, functions, variab-
les and controls are allowed and may lead
to a runtime error when the objects are not
available. The message system supports
PostMessage, which puts a message at the
end of the message queue and delays its
processing until after the currently run-
ning function has completed, sometimes
leading to unpredictable results. One of the
most powerful functions available in SQL-
Windows is SalCompileAndEvaluate. It
allows the execution of any SAL statement
at runtime.

The porting technology must pro-
vide solutions for all the technical pos-
sibilities available in the old system.
References and data types have to be
examined analytically. Some modi-
fications may be automated during
the translation. But in special cases the
solution is simply a technique that has to
be implemented and approved manually.
But how do you deal with the challenge
to provide a solution in .NET that co-
vers the complete scope of the old sys-
tem? It is clear that traditional porting

approaches, like a semi automated pro-
cess mixed with new programming,
would fail.

Manual post-processing
Since parts of the code were not under
version control yet, a version manage-
ment and a Defect-Tracking-System
have been introduced with the new pro-
ject. These quality-assurance tools have
been employed to ensure the success of
the porting project. The prepared source
code was then passed to the automated
conversion tool and further edited until
the ported code was able to be compiled
error–free in .NET. After this initial pha-
se, the first .NET version of eEvolution
had seen the light of day. However, it’s
not enough to deliver compilable code
to the customer, it should also work
well and look as good as the original
application, if not even better. In order
to reach this goal, extensive steps were
taken to manually post-process the code
that IcePorter couldn’t transfer in the
first pass. First of all the initial version
was checked for design errors. In case
IcePorter hadn’t worked correctly then

“thousands of places” would have to be
rewritten. Therefore, it was quite pos-
sible that an early version was destroyed
immediately. Here the Fecher porting
specialists proceeded quite pragmati-
cally: if a compiled and ported version
contained more than 20 instances of the
same error type, they searched for the
root cause and modified IcePorter ac-
cordingly.

The porting specialists can also write
their own porting plug-ins, for example
they can write one that adds additional
code before and after all calls to exter-
nal functions. IcePorter has been modi-
fied until the effort to further improve
the automated porting process was no
longer reasonable compared to the ma-
nual post-processing effort. The remai-
ning manual work was done only after
the last and final automated conversion
pass.

Examples of the post-processing tasks
are: check unqualified expressions, mo-
dify code that relies on window receive
parameters (allowed in SQLWindows but
not supported in .NET) , and implement
functions from third-party modules ad-

When and why was the decision for the .NET Framework made?
Were any alternatives under consideration?

As a company that stands close to Microsoft, nGroup has already been fa-
miliar with the .NET framework from other customer projects. The concept is
convincing, the integration in Visual Studio is important. The primary goal of
porting was the change to an up-to-date IT platform. In our case only Java
or .NET was applicable. The effort to port to a Java application in terms of the
multi-tier architecture is substantially higher than to port to .NET. A SQLWin-
dows client-server application is 2-tier application (the focus is on the user in-
terface). 4GL functions execute complex statements in a single line. Porting
of these complex statements while changing the architecture simultaneously
is hardly possible. Thus .NET seemed to be the only feasible solution to gu-
arantee a fast and successful success of the project.

How did the .NET framework positively affect the development? Which
were the biggest obstacles to overcome?

The development of the porting project was only possible because of the
features of .NET and the high flexibility of C#. With Java it would have been
impossible to reach a similar high degree of compatibility between the
old and the new world. Overloading of operators, return parameters and
delegates were the most important core features of C# that were needed
to write the porting framework. WinForms eased the development of visual
controls for the PPJ framework. The biggest obstacles were the replication
of multiple inheritance using delegates and the overloading of operators.

Did weak spots in the .NET framework become obvious during the
conversion or is there anything that Microsoft could have solved diffe-
rently or better?
In our opinion there are basically two aspects that could have been

solved better by Microsoft: 1. ADO.NET doesn‘t have a base class for

exceptions. We had to code known exceptions in the source code and
solve the rest via reflection. 2. The design of “short circuit overloading” in
the C# compiler is conceptually wrong (Chapter 7.11.2. of the C# speci-
fication). It unnecessarily mixes the operators op_True and op_False with
the bitwise operators. That makes it impossible to implement a bitwise
operator and a logical operator in the same class. This design problem
is solved during the translation process by generating an explicit cast to
Boolean. Additionally, there were problems with the integration of Oracle
databases and the data type NUMBER, and there are problems with the
performance of the WinForms editor on complex forms with many con-
trols. The designer sometimes crashes or it‘s very slow.

Why was the decision made for C# and which language characteris-
tics were considered?

C# was already deployed in other projects and C# offers generally more
possibilities than Visual Basic. The necessary mapping of the whole
SQLWindows language to the .NET framework and the transformation
of the project specific code to .NET would not have been possible using
VB.NET and the .NET framework 1.1. In the meantime the porting tech-
nology has been made available for Visual Basic 2.0 as well.

What does the future of the project look like? Are there any considera-
tions of using future versions of the .NET framework, and if yes, which
features particularly?

An important point for the future is transferring parts of the application
into a web-based application and the utilization of the .NET framework
or Visual Studio as a part of such a migration.

Five questions to the developer

dotnet-magazin.de

Special Issue

© Software & Support Verlag GmbH

Frank Wuttke is CEO of the nGroup and in charge
of the Transformationproject on .NET. You can re-
ach him by email wuttke@ngroup.info.

Links & Literatur

[1]	 www.ngroup.info

[2]	 www.fecher.de

[3]	 www.greatis.com/dotnet/

[4]	 www.iceteagroup.com

ded to SQLWindows and not implemen-
ted in the porting framework.

And now to the cost
The cost of the manual post-proces-
sing work is, on average, 25% of the
cost for the total project. This amount
may as well be much higher for a pro-
ject of above-average complexity, which
is measured by the amount of modules,
embedded external functions, COM ser-
vers, third-party SQLWindows libra-
ries, and usage of scripting technology.

Extensive testing – with the support
of tools if requested
The finalization phase ends when the pro-
ject is handed over to the client’s test team.
They have the specific knowledge to test
the application in depth. The quality assu-
rance phase must not be underestimated,
because all parts of the application have
to be fully tested.

Automated tools are also available for
this phase – on request the porting partner
Fecher can automate the testing of the core
areas of the SQLWindows application
with the test tool Tosca Commander, part
of the Tosca test suite. This tool does not
produce scripts but stores the technical in-
formation in so-called XML-GUI-Maps
instead. It is sufficient to port just the
XML-GUI-Maps because the transfor-
mation applied by the porting tool is very
clear and straightforward in terms of de-
sign and functionality. Tosca Commander
provides adaptors for both SQLWindows
and .NET, so that all automated test cases
can be executed immediately after the por-
ting. Therefore an overview of the quality
of the new software is guaranteed quickly.

Transferring customer-specific
configurations to the target system
 A ERP standard software is usually con-
figured to meet each customer’s special
needs. All these configurations have to be
functional also in the new target system in
order to ensure a high acceptance and low
update effort. No customer likes to pay
again for customizations that have already
been paid for. In parallel to the conversion
of the source code a way had to be found
to preserve and convert customer-specific
reports. The reporting engine used in the
source system is proprietary and does not
use a dedicated DB interface. Reports are

defined in templates and receive their data
from the application through an API. The
underlying queries are either stored in the
database, if they can be modified by the
customer, or they are directly stored in the
application. Because the report engine in-
cluded in Visual Studio 2005 is not a native
.NET application we searched for an al-
ternative. The decision was made in favor
of List&Label, which has a data transfer
philosophy similar to SQLWindows and
because the license policy of the manufac-
turer Combit is very comfortable. The last
big obstacle was the so-called Customizer.
Using SQLWindows it is not easily possib-
le to customize an application at runtime.
Visual customizations of the application’s
forms, as well as adding new objects and
new code, should work for every new re-
lease of the system and should not have to
be developed from scratch each time. In
SQLWindows there is the powerful com-
mand SALCompileAndEvaluate, which
allows for the execution of external code
in the interpreter at runtime. But this was
not sufficient. Many solutions to this pro-
blem have been created for eEvolution
during the years. Unfortunately none of
these solutions worked under .NET. The-
refore a completely new Customizer was
developed in .NET, which met all the re-
quirements that we had wished for since
years. User specific changes of the screens,
including code written using either SQL-
Windows or C# syntax with access to all
functions, classes and their methods, can
be executed at runtime. One of the biggest
strengths of .NET, compared to the previ-
ous system, was immediately clear in this
case: A large developer community offers
an even larger choice of tools that you can
use at a relatively low price without ha-
ving to reinvent the wheel every time. For
the Customizer we used a.NET control
by Greatis[3], which comes with the basic
functionality we needed.

Conclusion
After nine months the conversion was
completed successfully including final refi-
nements. Amongst other things, we needed
a new installer and a new source code ma-
nagement system. Once again the advan-
tages of Visual Studio 2005 were obvious.
The support offered by the development
environment is close to a miracle. In the
original environment such needs had to be

resolved in a time-consuming manual way.
In retrospect it can be concluded that some
parts of the project required more work
than expected. But all parties involved
would choose the same approach again.
The simplifications and the gain in pro-
ductivity on the software development
side allow for a reasonable and effective
refactoring at the necessary points. This
work will be the next major projects for
nGroup, besides the further development
of the solution.

Ice Tea Group
The Porting Project

Phones: +1-202-449-3778
		 +49 511 3400029
		 +1-800-440-7049
Fax:	 +1-202-449-3778
	 	 +1-800-440-7049

Internet: www.iceteagroup.com
Email: info@iceteagroup.com

